个人简介
研究员、博士生导师、理学博士。2009年加入重庆医科大学基础医学院神经科学研究中心。主持国家重大科学仪器设备开发专项子课题1项、国家自然科学基金3项、重庆市基础与前沿研究计划1项、第二批重庆市高等学校青年骨干教师资助计划1项、重庆医科大学优秀青年学者资助项目1项等项目;以通讯或第一作者在Transl Psychiatry、EBioMedicine、Neurobiol Stress等学术刊物上发表SCI论文30多篇;获第六届亚太地区人类蛋白质组大会青年学者旅行奖、中华医学科技奖三等奖。
教育背景及工作经历
2000-2004 湖南师范大学化学教育专业 学士
2004-2009 湖南师范大学生物化学与分子生物学专业 硕士
2009-2012 重庆医科大学基础医学院神经科学研究中心 助理研究员
2012-2020 重庆医科大学基础医学院神经科学研究中心 副研究员
2020-至今 重庆医科大学基础医学院神经科学研究中心 研究员
主持科研项目
(1) 2020年,校企合作横向课题,基于靶向定量组学技术的阿尔兹海默症生物标志物研究,(WNF20200912)
(2) 2017年,国家自然科学基金面上项目,杏仁核突触功能可塑性的CaMKIIβ调控及其抗抑郁作用研究(31770890)
(3) 2015年,国家自然科学基金面上项目,神经突触传递稳态的Rab3GAP调控机制及其在抗抑郁研究中的作用(31570826)
(4) 2013年,国家重大科学仪器设备开发专项子课题,多维生物色谱仪及液质联用关键部件的研制,(2012YQ12004408,任务名称:蛋白质组相对定量研究)
(5) 2012年,国家自然科学基金青年项目,抑郁模型大鼠海马突触蛋白质分析及相关药物的干预机制研究(81101009)
(6) 2015年,重庆市前沿与应用基础研究(一般)项目, Rab3GAP 调节神经突触传递稳态变化的抗抑郁机制研究(cstc2015jcyjA10052)
(7) 2014年,第二批重庆市高等学校青年骨干教师资助计划, Rab3-GTP 酶激活蛋白调节突触传递释放的抗抑郁机制研究(渝教人[2014]47号)
(8) 2013年,重庆医科大学优秀青年学者资助项目, 抑郁动物海马的突触膜蛋白质复合物变化分析及其突触重塑的分子调控机制(CYYQ201303)
代表性论文、专利(#Co-first authors; *Correspondence authors)
[1] Zhan Q #, Wang L#, Liu N, Yuan Y, Deng L, Ding Y, Wang, Zhou J*, Xie L *. Serum metabolomics study of narcolepsy type 1 based on ultra-performance liquid chromatography-tandem mass spectrometry. Amino Acids. 2023, 55(10):1247-1259. (IF: 3.789)
[2] Liu Y#, Zhang M#, Liu Z#, Li S#, Liu H, Huang R, Yi F*, Zhou J*. A strategy can be used to analyze intracellular interaction proteomics of cell-surface receptors. Amino Acids. 2023, 55(2):263-273. (IF: 3.789)
[3] Yang C#, Zhang M#, Li S#, Yi F, Huang H, Xie H*, Liu H, Huang R, Zhou J*. Effects of Camk2b Overexpression and Underexpression on the Proteome of Rat Hippocampal Neurons. Neuroscience. 2022, 503:58-68. (IF: 3.708)
[4] Cai X#, Yang C#, Chen J#, Gong W#, Yi F, Liao W, Huang R, Xie L*, Zhou J*. Proteomic Insights Into Susceptibility and Resistance to Chronic-Stress-Induced Depression or Anxiety in the Rat Striatum. Front Mol Biosci. 2021, 8:730473. (IF: 6.113)
[5] Tian F#, Liu D#, Chen J#, Liao W, Gong W, Huang R, Xie L*, Yi F*, Zhou J*. Proteomic Response of Rat Pituitary Under Chronic Mild Stress Reveals Insights Into Vulnerability and Resistance to Anxiety or Depression. Front Genet. 2021, 12:751999. (IF: 4.772)
[6] Liu D#, Cai X#, Wang L#, Yi F, Liao W, Huang R, Fang C*, Chen J*, Zhou J*. Comparative Proteomics of Rat Olfactory Bulb Reveal Insights into Susceptibility and Resiliency to Chronic-stress-induced Depression or Anxiety. Neuroscience. 2021, 473:29-43. (IF: 3.708)
[7] Liu Y#, Tian F#, Li S#, Chen W#, Gong W, Xie H, Liu D, Huang R, Liao W, Yi F, Zhou J*. Global effects of RAB3GAP1 dysexpression on the proteome of mouse cortical neurons. Amino Acids. 2021, 53(9):1339-1350. (IF: 3.789)
[8] Liao W#, Liu Y#, Huang H#, Xie H, Gong W, Liu D, Tian F, Huang R, Yi F*, Zhou J*. Intersectional analysis of chronic mild stress-induced lncRNA-mRNA interaction networks in rat hippocampus reveals potential anti-depression/anxiety drug targets. Neurobiol Stress. 2021, 15:100347. (IF: 7.142)
[9] Gong W#, Liao W#, Fang C#, Liu Y, Xie H, Yi F, Huang R, Wang L*, Zhou J*. Analysis of Chronic Mild Stress-Induced Hypothalamic Proteome: Identification of Protein Dysregulations Associated With Vulnerability and Resiliency to Depression or Anxiety. Front Mol Neurosci. 2021, 14:633398. (IF: 6.261)
[10] Liao W#, Liu Y#, Wang L#, Cai X, Xie H, Yi F, Huang R, Fang C*, Xie P*, Zhou J*. Chronic mild stress-induced protein dysregulations correlated with susceptibility and resiliency to depression or anxiety revealed by quantitative proteomics of the rat prefrontal cortex. Transl Psychiatry. 2021, 11(1):143. (IF: 7.989)
[11] Qin Z#, Gu M#, Zhou J#, Zhang W, Zhao N, Lü Y, Yu W*. Triggering receptor expressed on myeloid cells 2 activation downregulates toll-like receptor 4 expression and ameliorates cognitive impairment in the Abeta(1-42)-induced Alzheimer's disease mouse model. Synapse. 2020, 74(10):e22161. (IF: 2.561)
[12] Tang M#, Huang H#, Li S#, Zhou M, Liu Z, Huang R, Liao W, Xie P*, Zhou J*. Hippocampal proteomic changes of susceptibility and resilience to depression or anxiety in a rat model of chronic mild stress. Transl Psychiatry. 2019, 9(1):260. (IF: 5.279)
[13] Zhou J#, Yu W#, Zhang M#, Tian X, Li Y, Lü Y*. Imbalance of Microglial TLR4/TREM2 in LPS-Treated APP/PS1 Transgenic Mice: A Potential Link Between Alzheimer's Disease and Systemic Inflammation. Neurochem Res. 2019, 44(5):1138-1151. (IF: 3.037)
[14] Xie H#, Huang H#, Tang M, Wu Y, Huang R, Liu Z, Zhou M, Liao W, Zhou J*. iTRAQ-Based Quantitative Proteomics Suggests Synaptic Mitochondrial Dysfunction in the Hippocampus of Rats Susceptible to Chronic Mild Stress. Neurochem Res. 2018, 43(12):2372-2383. (IF: 2.782)
[15] Zhou M#, Tang M#, Li S#, Peng L#, Huang H, Fang Q, Liu Z, Xie P*, Li G*, Zhou J*. Effective lock-in strategy for proteomic analysis of corona complexes bound to amino-free ligands of gold nanoparticles. Nanoscale. 2018, 10(26):12413-12423. (IF: 6.97)
[16] Sun Z, Zhou S, Tang J, Ye T, Li J, Liu D, Zhou J*, Wang J*, Rosie Xing H*. Sec23a mediates miR-200c augmented oligometastatic to polymetastatic progression. EBioMedicine. 2018, 37:47-55. (IF: 6.68)
[17] Zhou M#, Liu Z#, Yu J#, Li S#, Tang M, Zeng L, Wang H, Xie H, Peng L, Huang H, Zhou C, Xie P*, Zhou J*. Quantitative Proteomic Analysis Reveals Synaptic Dysfunction in the Amygdala of Rats Susceptible to Chronic Mild Stress. Neuroscience. 2018, 376:24-39. (IF: 3.244)
[18] Liu Z#, Li S#, Wang H#, Tang M, Zhou M, Yu J, Bai S, Li P, Zhou J*, Xie P*. Proteomic and network analysis of human serum albuminome by integrated use of quick crosslinking and two-step precipitation. Sci Rep. 2017, 7(1):9856. (IF: 4.122)
[19] Qiao R#, Li S#, Zhou M#, Chen P, Liu Z, Tang M, Zhou J*. In-depth analysis of the synaptic plasma membrane proteome of small hippocampal slices using an integrated approach. Neuroscience. 2017, 353:119-132. (IF: 3.382)
[20] Zhou J#, Liu Z#, Yu J#, Han X, Fan S, Shao W, Chen J, Qiao R, Xie P*. Quantitative Proteomic Analysis Reveals Molecular Adaptations in the Hippocampal Synaptic Active Zone of Chronic Mild Stress-Unsusceptible Rats. Int J Neuropsychopharmacol. 2016, 19(1). (IF: 4.712)
[21] Liu Z#, Fan S#, Liu H, Yu J, Qiao R, Zhou M, Yang Y, Zhou J*, Xie P*. Enhanced Detection of Low-Abundance Human Plasma Proteins by Integrating Polyethylene Glycol Fractionation and Immunoaffinity Depletion. PLoS One. 2016, 11(11):e0166306. (IF: 2.766)
[22] Wu D#, Peng Y#, Zhou J#, Yang YT#, Rao CL, Bai SJ, Zhou XY, Chen J, Liao L, Liang ZH, Yang DY, Xie P*. Identification and validation of argininosuccinate synthase as a candidate urinary biomarker for major depressive disorder. Clin Chim Acta. 2015, 451(Pt B):142-8. (IF: 2.799)
[23] Han X#, Shao W#, Liu Z, Fan S, Yu J, Chen J, Qiao R, Zhou J*, Xie P*. iTRAQ-based quantitative analysis of hippocampal postsynaptic density-associated proteins in a rat chronic mild stress model of depression. Neuroscience. 2015, 298:220-92. (IF: 3.231)
[24] Pan J#, Liu H#, Zhou J#, Liu Z#, Yang Y, Peng Y, You H, Yang D, Xie P*. Ipsilateral hippocampal proteomics reveals mitochondrial antioxidative stress impairment in corticallesioned chronic mild stressed rats. Curr Mol Med. 2014, 14(9):1186-96. (IF: 3.612)
[25] Liu H#, Zhou J#, Fang L#, Liu Z, Fan S, Xie P*. Acute tryptophan depletion reduces nitric oxide synthase in the rat hippocampus. Neurochem Res. 2013, 38(12):2595-603. (IF: 2.551)
[26] Hu Y#, Zhou J#, Fang L#, Liu H, Zhan Q, Luo D, Zhou C, Chen J, Li Q, Xie P*. Hippocampal synaptic dysregulation of exo/endocytosis-associated proteins induced in a chronic mild stressed rat model. Neuroscience, 2013, 230:1-12. (IF: 3.327)
[27] Zhou J#, Bi D#, Lin Y, Chen P, Wang X*, Liang S*. Shotgun proteomics and network analysis of ubiquitin-related proteins from human breast carcinoma epithelial cells. Mol Cell Biochem. 2012, 359(1-2):375-84. (IF: 2.329)
[28] Zhou J#, Hu Y#, Lin Y, Liu H, Xie P*. Preparation and application of a partially degradable gel in mass spectrometry-based proteomic analysis. J Chromatogr B. 2011, 879(28):2957-2962. (IF: 2.888)
[29] Zhou J, Li J, Li J, Chen P, Wang X* and Liang S*. Dried polyacrylamide gel absorption: A method for efficient elimination of the interferences from SDS-solubilized protein samples in mass spectrometry-based proteome analysis. Electrophoresis, 2010, 31(23-24):3816-3822. (IF: 3.569)
[30] Zhou J#, Xiong J#, Li J, Huang S, Zhang H, He Q, Lin Y, Chen P, Wang X*, Liang S*. Gel absorption-based sample preparation for the analysis of membrane proteome by mass spectrometry. Anal Biochem. 2010, 404(2):204-210. (IF: 3.236)
[31] Zhou J, Huang S, Bi D, Zhang H, Li J, Lin Y, Chen P, Wang X*, Liang S*. Analysis of integral membrane proteins by heat gel-embedment combined with improved in-gel digestions. Electrophoresis 2009, 30(23):4109-4117. (IF: 3.077)
[32] Zhou J, Lin Y, Deng X, Shen J, He Q, Chen P, Wang X*, Liang S*. Development and application of a two-phase, on-membrane digestion method in the analysis of membrane proteome. J Proteome Res. 2008, 7(4):1778-1783. (IF: 5.684)
[33] Zhou J, Zhou T, Cao R, Liu Z, Shen J, Chen P, Wang X*, Liang S*. Evaluation of the application of sodium deoxycholate to proteomic analysis of rat hippocampal plasma membrane. J Proteome Res. 2006, 5(10):2547-2553. (IF: 5.151)